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PROBLEM

=The total health care spending in 2014
accounted for 17.5% of the nation’s GDP and is
expected to rise to 20.1% by 2025.

= Roughly 1/3"@ of health care spending can be
attributed to fraud, waste, and abuse.

= Health care claims are complex because they

involve multiple parties including service
providers, insurance subscribers, and insurance
carriers.

=In this paper, we introduce an approach for
discovering health care fraud using graph-based
data mining.
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OVERVIEW

= Representing Medicare claim data as a graph
will provide an intuitive and efficient method @
for detecting anomalies.

= To evaluate our hypothesis, we use the @ @
Graph-Based Anomaly Detection (GBAD)

tool ( ). @ @ @ @

= We include the relationship between the
patient, claims, physician, diagnosis, and
what procedure was performed to treat that @ @ @ @
diagnosis as features for anomaly detection.




GRAPHS
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= If we consider the entities involved in the process of
medical claims as nodes, and the relationships and
transactions between the entities involved as edges,
we can represent the entire process as a graph.

= Example:

= Patient "files" a claim of the types “ip
“carrier’.

=Each claim can have an admitting diagnosis
represented by a “visit-for” edge.

= Each claim can also have a "Physician" who "make-
diagnosis" - "Diagnosis", and it is "treated-with" -
"Procedure”.
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DATA SET: DE-SYNPUF

= The dataset used for this
research is the CMS Linkable
2008-2010 Medicare Data

Entrepreneurs’ Synthetic Public
Use File (DE-SynPUF) dataset.

= Did not use all of the data

= Focuses on a subset of involving
diabetic patients in the state of
Tennessee from 2009.
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GRAPH REPRESENTATION OF MEDICARE CLAIMS

Carrier claim graph has a total of
21,082 vertices and 32,214 edges
representing 572 diabetic patient
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A visual representation of a carrier and ip-op claim subgraph (consisting
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Ip-op claim graph has total of 1,469
vertices and 2,139 edges representing
62 diabetic patient
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GRAPH-BASED ANOMALY DETECTION

- GBAD ( )

= Find normative highly-compressing pattern S

= Additional nodes/edges (search a bit further) ﬁ Normative

Pattern
= Modified labels among structural matches
. © fredear
= Pr(Sy) = # particular Sy / # all Sy’s

Medicare
= Anomaly score = Pr(Sz) * dist(Sz,5)

= Missing nodes/edges (gathered along the way) l‘: E @

Claim Data

e -




KNOWN FRAUD SCENARIOS

= Identity Theft: Stealing identity information and using it to submit fraudulent bills
= Phantom Billing: Billing for services that are not actually performed.

= Unbundling: Billing each stage of a procedure as if it were a separate treatment.

= Upcoding: Billing costlier services than the one actually performed.

= Bill Padding: Providing medically excessive or unnecessary services to a patient.
= Duplicate Billing: Submitting similar claims more than once.

= Kickbacks: A negotiated bribery in which a commission is paid to the bribe-taker

= Doctor shopping: Patient consults many physicians in order to obtain multiple
prescriptions




EXPERIMENTAL RESULTS

= Discover several

interesting anomalies... e type type

visit-for visit-for attending visit-for visit-for attending /visit-8-attended-by visit-for visit-for attending

@ Diagnosis Diagnosis w

= Example #1: Unusually

high number of visits

WhiCh Could be a_ doctor make-diagnosis make-diagnosis make-diagnosis
Shopper Or a' Case Of Diagnosis Diagnosis Diagnosis on-visit-7-recommend
identity theft.

treated-with treated-with treated-with

+ Example #2:

Recommending the
Normative Pattern Unusual visit Unusual procedure

same procedure
multiple times, which
could be a case of
phantom billing or
duplicate billing.
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EXPERIMENTAL RESULTS
- Example #3: Missing

node and edges.
= Patient receives same

procedures for treating

the same diagnosis.
= A potential scenario of

phantom billing, or
)

perhaps even the make-diagnosis
scenario of a kickback

.. — Missing Diagnosis
where the physician and

patient are involved in —
filing fake claims.

Normative Pattern

type

visit-for visit-for attending visit-for visit-for attending




EXPERIMENTAL RESULTS

= Example #4:Usual claim
status ( Reprocessed). e type type
= Example #5: Duplicate

. visit-for visit-for attending visit-for visit-for attending visit-for visit-for attending
procedure on multiple

visits.

make-diagnosis make-diagnosis make-diagnosis

= Example #6: Unusual

procedure performed
(OrthOtiC/PrOSthetic) treated-with treated-with /on-visit-8-received treated-with
laim-status code
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SUMMARY

= We demonstrate how anomalies that are potentially
fraudulent can be discovered using a graph based
approach on data representing health care
transactions.

= Unsupervised approach that exploits attributes of
entities and as well as the relationships between
entities for discovering anomalies.




FUTURE WORK

= Extend this approach to the entire Medicare claim dataset.

= Incorporate prescription drug claims

= This will provide us with even more information as to potential
fraudulent activities in the health care industry.

= Scalability
= Investigate graph-partitioning and graph-sampling approaches that
could handle streaming data.
= Phenotype discovery

= Patients with certain diseases may have certain phenotypic groups
based on their comorbidity characteristics because they require
totally different management and treatment paths.

= We plan to further investigate these phenotypic groups.
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