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Introduction

* Twitter allows users to post information, updates,
opinions, etc., using tweets.

* As the popularity increases around a certain event,
more people tweet, thereby making it “trending”.

* Jwitter process is slow, and the trending topics
usually last for only a few hours/day at most

* Adversaries use this as an opportunity to propagate
off-topic content.

* Spammer may includes a URL, leading the reader to
a completely unrelated website.

* Takes advantage of shortened URL.




Our Approach
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Aim to detect following types of spams/anomalies
 Keyword/Hashtag Hijacking :- Using popular keyword/hashtag to
promote tweets not related to the topic
 Bogus Link :- Posting URLs which have nothing to do with the tweet



Our Approach (cont.)

Four Key Modules:

* Named Entity Extractor

* Ontology Generator

* Graph Parser

* Graph Based Anomaly Detection

Twitter Feed ||

Tweet Text

Tweet
o Named Entity | Named Ontology Graph Graph Graph Based
Extractor Entity Generator | Ontology Parser File Anomaly Detection
News

News Feed "

News Story




Named Entity Extractor

* Named Entities: Real-world objects that can be denoted with a
proper name like place, person, organization, company, date, etc.
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Ontology Generator
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Graph Layout
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Graph-Based Anomaly Detection

® Find normative pattern S (highly compressing subgraph using

MDL principal )

Find closely-matching subgraph §, of §
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Dataset

* Collected data using Twitter’s
standard search API.

e (Collected tweets related to two
trending topics during the summer

of 2018
* “FIFA World Cup”
e “NATO Summit’

* Crawled news from the URLs in
tweets

Anomalies
Trending Topic | Total tweet/news
Keyboard Hijcking|Bogus Link| Total

World cup 1,463 2 20 22

NATO Summit 1,716 0 | | | |
Dataset Number of Vertices Number of edges

FIFA World Cup 88,887 87,424

NATO Summit 90,224 88,508




Results on FIFA Worldcup Dataset
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Results on FIFA Worldcup Dataset
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Fig. Example screenshot of a) news and b) tweet showing keyword hijacking



Results on NATO Summit Dataset
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Results on NATO Summit Dataset
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Evaluation

Approach Precision Recall Fl-Score

FIFA World Cup Dataset
Graph-based (non-parametric) 0.15 I 0.27
Graph-based (parametric) 0.51 0.73 0.6
Benevenuto et al. [ 1] 0.8 0.18 0.3
Chen et al.[2 0.78 0.45 0.58
Anantharam et al.[3] 0.24 0.36 0.29
Boididou et al.[4] 0.7 0.41 0.51

NATO Summit Dataset
Graph-based(non-parametric) 0.14 I 0.24
Graph-based (parametric) 0.54 0.64 0.58
Benevenuto et al.[ 1] 0.33 0.02 0.04
Chen et al.[2] 0.52 0.3 0.36
Anantharam et al. [3] 0.24 0.36 0.29
Boididou et al.[4] 0.38 0.27 0.32

Baseline Approaches
(Benevenuto et al,, Chen et
al., Boididou et al.) suffer from
class imbalance problem

Anantharam et al. needs a
predefined reliable
information source for each
topic

Proposed graph-based
approach is unsupervised

as well as performs better



Our Advantages

* Does not suffer from class imbalance problems like the baselines

* The performance of proposed approach gets better in data where
spam Is rare.

* Does not need any prior information as it is completely unsupervised
* Context (hamed entities and their relationship) generated from both

tweet and document (heterogeneous sources) pointed to by URL in
tweet is hard to fabricate by the spammer



Conclusion

* Proposed an unsupervised graph-based approach for detecting spam
tweets by generating tweet context using
* Named Entities and their relationships
* Ontology of named entities

* Proposed approach has superior performance in terms of recall and
Fl-score to that of existing approaches



Future Work

* Analyze a near real-time feed by converting data stream into graph
stream

* Test the robustness of proposed approach by extending it to more
topics
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